

BUL804

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- n NPN TRANSISTOR
- n HIGH VOLTAGE CAPABILITY
- n LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- n VERY HIGH SWITCHING SPEED

APPLICATIONS

- DEDICATED FOR PFC SOLUTION IN HALF-BRIDGE VOLTAGE FED TOPOLOGY
- n ELECTRONIC BALLAST FOR FLUORESCENT LIGHTING

DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability.

It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The device is designed for use as PFC in high frequency ballast half Bridge voltage fed topology.

Table 1: Order Codes

Part Number	Marking	Package	Packaging	
BUL804	BUL804	TO-220	Tube	

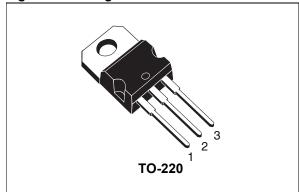
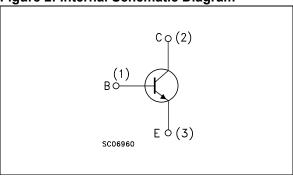



Figure 2: Internal Schematic Diagram

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	800	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	8	V
I _C	Collector Current	4	А
I _{CM}	Collector Peak Current (t _p < 5ms)	8	Α
I _B	Base Current	2	А
I _{BM}	Base Peak Current (t _p < 5ms)	4	А
P _{tot}	Total Dissipation at T _C = 25 °C	70	W
T _{stg}	Storage Temperature	-65 to 150	°C
T _J	Max. Operating Junction Temperature	150	°C

Table 3: Thermal Data

R _{thj-case}	Thermal Resistance Junction-Case	Max	1.78	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

Table 4: Electrical Characteristics (T_{case} = 25 °C unless otherwise specified)

Symbol Parameter		Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current	V _{CE} = 800 V				100	μA
	(V _{BE} = -1.5 V)	V _{CE} = 800 V	T _j = 125 °C			500	μA
V_{EBO}	Emitter-Base Voltage	I _E = 10 mA		8			V
	$(I_C = 0)$						
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 100 mA	L = 25 mH	450			V
	$(I_B = 0)$						
I _{CEO}	Collector Cut-off Current	V _{CE} = 450 V				250	μΑ
	$(I_B = 0)$						
V _{CE(sat)} *	Collector-Emitter	I _C = 1 A	I _B = 0.2 A			0.8	V
	Saturation Voltage	I _C = 2.5 A	$I_B = 0.5 A$			1.2	V
V _{BE(sat)} *	Base-Emitter Saturation	I _C = 1 A	I _B = 0.2 A			1.2	V
	Voltage	I _C = 2.5 A	$I_B = 0.5 A$			1.3	V
h _{FE}	DC Current Gain	I _C = 10 mA	V _{CE} = 5 V	10			
		I _C = 2 A	$V_{CE} = 5 V$	10		20	
	RESISTIVE LOAD	V _{CC} = 300 V	I _C = 2 A				
t_s	Storage Time	I _{B1} = 0.4 A	$I_{B2} = -0.4 A$	1.8		2.6	μs
t _f	Fall Time	T _p = 30 μs	(see figure 11)		0.1	0.25	μs
	INDUCTIVE LOAD	I _C = 2 A	I _{B1} = 0.4 A				
t_s	Storage Time	$V_{BE(off)} = -5 V$	$R_{BB} = 0 \Omega$		0.6	1	μs
t _f	Fall Time	V _{clamp} = 360 V	(see figure 10)		0.1	0.2	μs

^{*} Pulsed: Pulsed duration = 300 $\mu s,$ duty cycle ≤ 1.5 %.

2/7

Figure 3: DC Current Gain

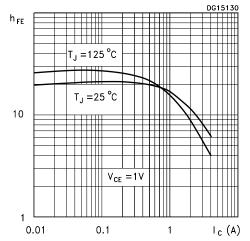


Figure 4: Collector-Emitter Saturation Voltage

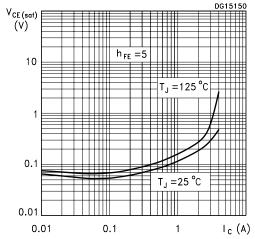


Figure 5: Inductive Load Switching Time

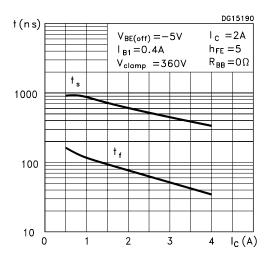


Figure 6: DC Current Gain

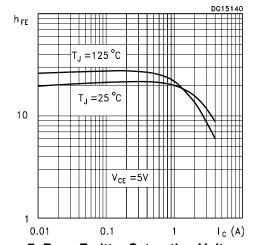


Figure 7: Base-Emitter Saturation Voltage

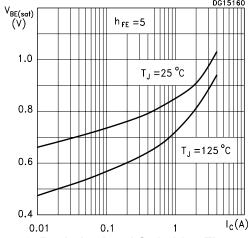


Figure 8: Resistive Load Switching Time

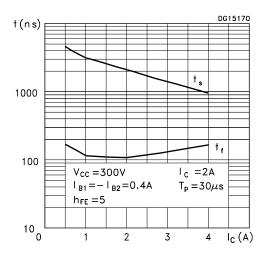


Figure 9: Reverse Biased Operating Area

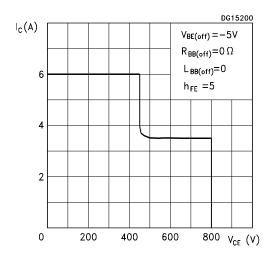
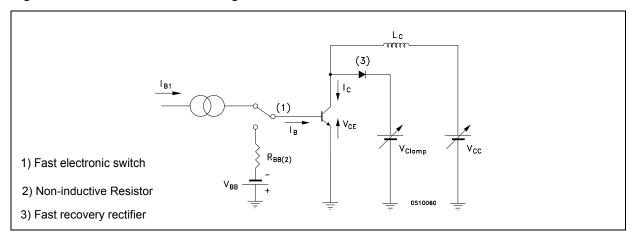
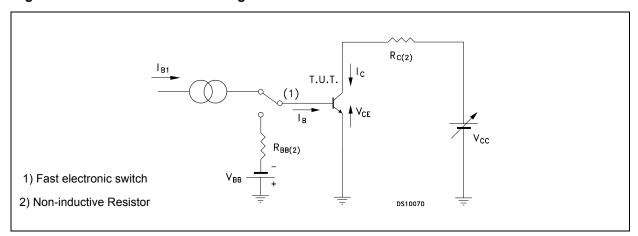
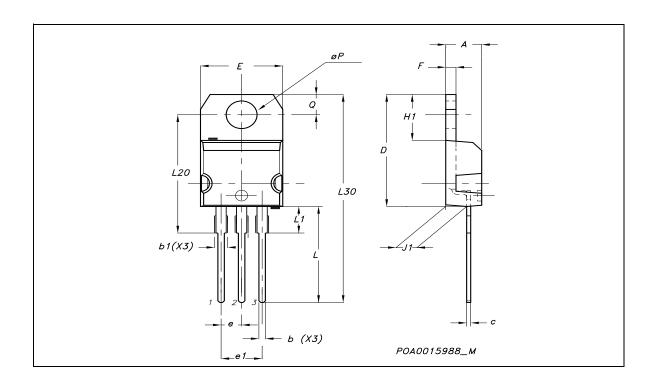


Figure 10: Inductive Load Switching Test Circuit


Figure 11: Restistive Load Switching Test Circuit

4/7

TO-220 I	MECH	ANICAL	DATA
----------	------	--------	------

рім.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

BUL804

Table 5: Revision History

Release Date	Version	Change Designator
07-Jul-2005	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

